Hardness and Approximation of The Asynchronous Border Minimization Problem

نویسندگان

  • Alexandru Popa
  • Prudence W.H. Wong
  • Fencol C.C. Yung
چکیده

We study a combinatorial problem arising from the microarrays synthesis. The objective of the BMP is to place a set of sequences in the array and to find an embedding of these sequences into a common supersequence such that the sum of the “border length” is minimized. A variant of the problem, called P-BMP, is that the placement is given and the concern is simply to find the embedding. Approximation algorithms have been proposed for the problem [21] but it is unknown whether the problem is NP-hard or not. In this paper, we give a comprehensive study of different variations of BMP by presenting NP-hardness proofs and improved approximation algorithms. We show that P-BMP, 1D-BMP, and BMP are all NP-hard. In contrast with the result in [21] that 1D-P-BMP is polynomial time solvable, the interesting implications include (i) the array dimension (1D or 2D) differentiates the complexity of P-BMP; (ii) for 1D array, whether placement is given differentiates the complexity of BMP; (iii) BMP is NP-hard regardless of the dimension of the array. Another contribution of the paper is improving the approximation for BMP from O(n log n) to O(n log n), where n is the total number of sequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardness and Approximation of the Asynchronous Border Minimization Problem - (Extended Abstract)

We study a combinatorial problem arising from microarrays synthesis. The synthesis is done by a light-directed chemical process. The objective is to minimize unintended illumination that may contaminate the quality of experiments. Unintended illumination is measured by a notion called border length and the problem is called Border Minimization Problem (BMP). The objective of the BMP is to place...

متن کامل

Parameterized Complexity of Asynchronous Border Minimization

Microarrays are research tools used in gene discovery as well as disease and cancer diagnostics. Two prominent but challenging problems related to microarrays are the Border Minimization Problem (BMP) and the Border Minimization Problem with given placement (P-BMP). In this paper we investigate the parameterized complexity of natural variants of BMP and P-BMP, termed BMP and P-BMP respectively,...

متن کامل

Approximating Border Length for DNA Microarray Synthesis

We study the border minimization problem (BMP), which arises in microarray synthesis to place and embed probes in the array. The synthesis is based on a light-directed chemical process in which unintended illumination may contaminate the quality of the experiments. Border length is a measure of the amount of unintended illumination and the objective of BMP is to find a placement and embedding o...

متن کامل

Bit Error Performance for Asynchronous Ds Cdma Systems Over Multipath Rayleigh Fading Channels (RESEARCH NOTE)

In recent years, there has been considerable interest in the use of CDMA in mobile communications. Bit error rate is one of the most important parameters in the evaluation of CDMA systems. In this paper, we develop a technique to find an accurate approximation to the probability of bit error for asynchronous direct–sequence code division multiple–access (DS/CDMA) systems by modeling the multipl...

متن کامل

Better Algorithms and Hardness for Broadcast Scheduling via a Discrepancy Approach

We study the broadcast scheduling problem with the objective of minimizing the average response time. There is a single server that can hold n pages of unit size, and multiple requests for these pages arrive over time. At each time slot the server can broadcast one page which satisfies all the outstanding requests for this page at that time. The goal is to find a schedule to minimize the averag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012